Ginger Root

Ingredients (alphabetical)
Medicinal: Ginger 4:1 Extract (*Zingiber officinale*) (root) 250 mg (4:1 extract providing 1000 mg dried root), Ginger Powder 200 mg (*Zingiber officinale*) (root) 200 mg
Non-medicinal: Vegetarian capsule (hypromellose, purified water, silica).

Allergens
Corn (maltodextrin)

Source
Ginger (*Zingiber officinale*) Root

Uses
Traditionally used in herbal medicine to help relieve digestive upset/disturbances including lack of appetite, nausea, digestive spasm, indigestion, dyspepsia and flatulent colic (carminative).

Recommended Amount
1-2 capsules per day.

Adverse Side Effects
Ginger is usually well tolerated. Doses greater than 5 grams per day may increase the risk of side effects and decrease tolerability [Srivastava, 1989]. Common side effects of ginger include abdominal discomfort, heartburn, diarrhea, and a pepper-like irritant effect in the mouth and throat [Vutyavanich, 2001] [Grontved, 1998].

Interactions
Anticoagulants/Antiplatelets: Ginger may increase the risk of bleeding [Brinker, 1998]. Ginger has been shown to inhibit thromboxane formation and inhibit platelet aggregation [Srivastava, 1986], however this effect appears dependent on dose and formulation (e.g. dried, fresh, or extract) [Lumb, 1994].
H2-blockers/Proton pump inhibitors: Ginger may antagonize activity by increasing stomach acid production [Brinker, 1998].
Antihypertensives: Ginger may cause additive hypotensive effects [Brinker, 1998].
Hypoglycemia/Insulin: Ginger may cause additive reductions in blood glucose [Brinker, 1998].

Precautions / Cautions
People with gastric ulcers or reflux should use this herb with caution. Stop use of high dose ginger supplements (>10g) 1 week before major surgery [Braun, 2005].

Contraindications
Individuals with gallstones should consult with their physician before using ginger [Boon, 2004].

Pharmaceutical Commentary
Orally, ginger is used for motion sickness, morning sickness, colic, dyspepsia, flatulence, chemotherapy-induced nausea, rheumatoid arthritis (RA), osteoarthritis, loss of appetite, post-surgical nausea and vomiting, migraine headache, and for discontinuing selective serotonin reuptake inhibitor (SSRI) drug therapy. It is also used orally for anorexia, upper respiratory tract infections, cough, bronchitis, as a galactagogue, diaphoretic, diuretic, as a stimulant; and for treating stomachache, diarrhea, nausea, cholera, and bleeding.

Ginger is probably most well-known for its ability to reduce nausea, and it has been superior to placebo in studies on seasickness, morning sickness, chemotherapy-induced nausea, motion sickness, pregnancy-related nausea, and others [Ernst,
2000) [Keating, 2002] [Lien, 2003] [Pongrojrap, 2003]. In the majority of these trials, the dose used was 1 gram and there were no adverse events. A few trials have not shown a statistically significant difference, but the trend toward improvement was always present. Two possible mechanisms are enhanced intestinal transport and CNS activity, with studies in humans indicating that the latter is more likely [Ernst, 2000].

The anti-emetic action of ginger is attributed to the shogaol and gingerol constituents found in the rhizome. They are believed to stimulate the flow of saliva, bile and gastric secretions. Additional activities include the suppression of gastric contractions and improvement of the intestinal muscle tone and peristalsis (Bisset, 1994). Both animal and human studies support the use of ginger in reducing emesis due to a peripherally acting mechanism, acting on the gastrointestinal tract alone [Holtman, 1989].

One of the active constituents found in ginger, galanolactone, is a serotonin receptor antagonist, which may serve as an explanation of its anti-emetic effect [Huang, 1991] [Mustafa, 1993] [Yamahara, 1990]. Galanolactone is thought to interact with 5HT-3 receptors and may be partially responsible for anti-emetic activity [Lumb, 1993]. This constituent may also explain the inhibitory effect of ginger on serotonin-induced diarrhea and antispasmodic effects on visceral and vascular smooth muscle.

One of the active constituents in ginger, shogaol, has shown to stimulate intestinal blood flow and transport in rat and guinea pig studies [Hashimoto, 2002] [Murata, 2002], indicating that it may effectively stimulate digestion. However, a placebo-controlled trial studying ginger showed no effect on gastric emptying rate [Phillips, 1993].

A final use for ginger is in the treatment of arthritis. High doses of ginger may have anti-inflammatory [Thomson, 2002] and analgesic [Onogi, 1992] effects. One trial observing patients with osteoarthritis found that ginger extract caused a modest reduction in knee pain [Altman, 2001].

References

CONCERNS? COMMENTS? CALL 1.800.430.7898
For more monographs go to: www.webbernaturals.com/downloads.html